Рендеринг — Википедия
Материал из Википедии — свободной энциклопедии
Фотореалистичное изображение, созданное POV-Ray 3.6. Модели кувшина, стаканов и пепельницы созданы при помощи Rhinoceros 3D, модель игральной кости — в cinema 4D.Ре́ндеринг или отрисовка (англ. rendering — «визуализация») — термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.
Здесь модель — это описание любых объектов или явлений на строго определённом языке или в виде структуры данных. Такое описание может содержать геометрические данные, положение точки наблюдателя, информацию об освещении, степени наличия какого-то вещества, напряжённость физического поля и пр.
Примером визуализации могут служить радарные космические снимки, представляющие в виде изображения данные, полученные посредством радиолокационного сканирования поверхности космического тела, в диапазоне электромагнитных волн, невидимых человеческим глазом.
Часто в компьютерной графике (художественной и технической) под рендерингом (3D-рендерингом) понимают создание плоской картинки — цифрового растрового изображения — по разработанной 3D-сцене. Синонимом в данном контексте является визуализация.
Визуализация — один из наиболее важных разделов в компьютерной графике, и на практике он тесным образом связан с остальными. Обычно программные пакеты трёхмерного моделирования и анимации включают в себя также и функцию рендеринга. Существуют отдельные программные продукты, выполняющие рендеринг.
В зависимости от цели, различают пре-рендеринг, как достаточно медленный процесс визуализации, применяющийся в основном при создании видео, и рендеринг в режиме реального времени, например, в компьютерных играх. Последний часто использует 3D-ускорители.
Компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).
ru.wikipedia.org
Что такое РЕНДЕР (РЕНДЕРИНГ) — простой ответ что это значит
Рендер (Рендеринг) — это процесс создания финального изображения или последовательности из изображений на основе двухмерных или трехмерных данных. Данный процесс происходит с использованием компьютерных программ и зачастую сопровождается трудными техническими вычислениями, которые ложатся на вычислительные мощности компьютера или на отдельные его комплектующие части.
Процесс рендеринга так или иначе присутствует в разных сферах профессиональной деятельности, будь то киноиндустрия, индустрия видеоигр или же видеоблогинг. Зачастую, рендер является последним или предпоследним этапом в работе над проектом, после чего работа считается завершенной или же нуждается в небольшой постобработке. Также стоит отметить, что нередко рендером называют не сам процесс рендеринга, а скорее уже завершенный этап данного процесса или его итоговый результат.
Слово Рендер (Рендеринг) — это англицизм, который зачастую переводится на русский язык словом “Визуализация”.
Что такое Рендеринг в 3D?
Чаще всего, когда мы говорим о рендере, то имеем в виду рендеринг в 3D графике. Сразу стоит отметить, что на самом деле в 3D рендере нету трех измерений как таковых, которые мы зачастую можем увидеть в кинотеатре надев специальные очки. Приставка “3D” в название скорее говорит нам о способе создание рендера, который и использует 3-х мерные объекты, созданные в компьютерных программах для 3D моделирования. Проще говоря, в итоге мы все равно получаем 2D изображение или их последовательность (видео) которые создавались (рендерелись) на основе 3-х мерной модели или сцены.
Рендеринг — это один из самых сложных в техническом плане этапов в работе с 3D графикой. Чтоб объяснить эту операцию простым языком, можно привести аналогию с работами фотографов. Для того, чтоб фотография предстала во всей красе, фотографу нужно пройти через некоторые технические этапы, например, проявление пленки или печать на принтере. Примерно такими же техническими этапами и обременены 3d художники, которые для создания итогового изображения проходят этап настройки рендера и сам процесс рендеринга.
Построение изображения.
Как уже говорилось ранее, рендеринг — это один из самых сложных технических этапов, ведь во время рендеринга идут сложные математические вычисления, выполняемые движком рендера. На этом этапе, движок переводит математические данные о сцене в финальное 2D-изображение. Во время процесса идет преобразование 3d-геометрии, текстур и световых данных сцены в объединенную информацию о цветовом значение каждого пикселя в 2D изображение. Другими словами, движок на основе имеющихся у него данных, просчитывает то, каким цветом должен быть окрашено каждый пиксель изображения для получения комплексной, красивой и законченной картинки.
Основные типы рендеринга:
В глобальном плане, есть два основных типа рендеринга, главными отличиями которых является скорость, с которой просчитывается и финализируется изображение, а также качество картинки.
Что такое Рендеринг в реальном времени?
Рендеринг в реальном времени зачастую широко используется в игровой и интерактивной графике, где изображение должно просчитываться с максимально большой скоростью и выводиться в завершенном виде на дисплей монитора моментально.
Поскольку ключевым фактором в таком типе рендеринга есть интерактивность со стороны пользователя, то изображение приходится просчитывать без задержек и практически в реальном времени, так как невозможно точно предсказать поведение игрока и то, как он будет взаимодействовать с игровой или с интерактивной сценой. Для того, чтоб интерактивная сцена или игра работала плавно без рывков и медлительности, 3D движку приходится рендерить изображение со скоростью не менее 20-25 кадров в секунду. Если скорость рендера будет ниже 20 кадров, то пользователь будет чувствовать дискомфорт от сцены наблюдая рывки и замедленные движения.
Большую роль в создание плавного рендера в играх и интерактивных сценах играет процесс оптимизации. Для того, чтоб добиться желаемой скорости рендера, разработчики применяют разные уловки для снижения нагрузки на рендер движок, пытаясь снизить вынужденное количество просчетов. Сюда входит снижение качества 3д моделей и текстур, а также запись некоторой световой и рельефной информации в заранее запеченные текстурные карты. Также стоит отметить, что основная часть нагрузки при просчете рендера в реальном времени ложиться на специализированное графическое оборудование (видеокарту -GPU), что позволяет снизить нагрузку с центрального процессора (ЦП) и освободить его вычислительные мощности для других задач.
Что такое Предварительный рендер?
К предварительному рендеру прибегают тогда, когда скорость не стоит в приоритете, и нужды в интерактивности нет. Данный тип рендера используется чаще всего в киноиндустрии, в работе с анимацией и сложными визуальными эффектами, а также там, где нужен фотореализм и очень высокое качество картинки.
В отличие от Рендера в реальном времени, где основная нагрузка приходилась на графические карты(GPU) В предварительном рендере нагрузка ложится на центральный процессор(ЦП) а скорость рендера зависит от количества ядер, многопоточности и производительности процессора.
Нередко бывает, что время рендера одного кадра занимает несколько часов или даже несколько дней. В данном случаи 3D художникам практически не нужно прибегать к оптимизации, и они могут использовать 3D модели высочайшего качества, а также текстурные карты с очень большим разрешением. В итоге, картинка получается значительно лучше и фото-реалистичней по сравнению с рендером в реальном времени.
Программы для рендеринга.
Сейчас, на рынке присутствует большое количество рендеринг движков, которые отличаются между собой скоростью, качеством картинки и простотой использования.
Как правило, рендер движки являются встроенными в крупные 3D программы для работы с графикой и имеют огромный потенциал. Среди наиболее популярных 3D программ (пакетов) есть такой софт как:
- 3ds Max;
- Maya;
- Blender;
- Cinema 4d и др.
Многие из этих 3D пакетов имеют уже идущие в комплекте рендер движки. К примеру, рендер-движок Mental Ray присутствует в пакете 3Ds Max. Также, практически любой популярный рендер-движок, можно подключить к большинству известных 3d пакетов. Среди популярных рендер движков есть такие как:
- V-ray;
- Mental ray;
- Corona renderer и др.
Хотелось бы отметить, что хоть и процесс рендеринга имеет очень сложные математические просчеты, разработчики программ для 3D-рендеринга всячески пытаются избавить 3D-художников от работы со сложной математикой лежащей в основе рендер-программы. Они пытаются предоставить условно-простые для понимания параметрические настройки рендера, также материальные и осветительные наборы и библиотеки.
Методы визуализации.
Большинство рендер движков использует три основных метода вычисления. Каждый из них имеет как свои преимущества, так и недостатки, но все три метода имеют право на своё применение в определенных ситуациях.
1. Scanline (сканлайн).
Сканлайн рендер — выбор тех, кто приоритет отдаст скорости, а не качеству. Именно за счет своей скорости, данный тип рендера зачастую используется в видеоиграх и интерактивных сценах, а также во вьюпортах различных 3D пакетов. При наличие современного видеоадаптера, данный тип рендера может выдавать стабильную и плавную картинку в реальном времени с частотой от 30 кадров в секунду и выше.
Алгоритм работы:
Вместо рендеринга «пикселя по пикселю», алгоритм функционирования «scanline» рендера заключается в том, что он определяет видимую поверхность в 3D графике, и работая по принципу «ряд за рядом», сперва сортирует нужные для рендера полигоны по высшей Y координате, что принадлежит данному полигону, после чего, каждый ряд изображения просчитывается за счет пересечения ряда с полигоном, который является ближайшим к камере. Полигоны, которые больше не являются видимыми, удаляются при переходе одного ряда к другому.
Преимущество данного алгоритма в том, что отсутствует необходимость передачи координат о каждой вершине с основной памяти в рабочую, а транслируются координаты только тех вершин, которые попадают в зону видимости и просчета.
2. Raytrace (рейтрейс).
Этот тип рендера создан для тех, кто хочет получить картинку с максимально качественной и детализированной прорисовкой. Рендеринг именно этого типа, имеет очень большую популярность у любителей фотореализма, и стоит отметить что не спроста. Довольно часто с помощью рейтрейс-рендеринга мы можем увидеть потрясающе реалистичные кадры природы и архитектуры, которые отличить от фотографии удастся не каждому, к тому же, нередко именно рейтрейс метод используют в работе над графиков в CG трейлерах или кино.
К сожалению, в угоду качеству, данный алгоритм рендеринга является очень медлительным и пока что не может использоваться в риал-тайм графике.
Алгоритм работы:
Идея Raytrace алгоритма заключается в том, что для каждого пикселя на условном экране, от камеры прослеживается один или несколько лучей до ближайшего трехмерного объекта. Затем луч света проходит определенное количество отскоков, в которые может входить отражения или преломления в зависимости от материалов сцены. Цвет каждого пикселя вычисляется алгоритмически на основе взаимодействия светового луча с объектами в его трассируемом пути.
Метод Raycasting.
Алгоритм работает на основе «бросания» лучей как будто с глаз наблюдателя, сквозь каждый пиксель экрана и нахождения ближайшего объекта, который преграждает путь такого луча. Использовав свойства объекта, его материала и освещения сцены, мы получаем нужный цвет пикселя.
Нередко бывает, что «метод трассировки лучей» (raytrace) путают с методом «бросания лучей» (raycasting). Но на самом деле, «raycasting» (метод бросания луча) фактически является упрощенным «raytrace» методом, в котором отсутствует дальнейшая обработка отбившихся или заломленных лучей, а просчитывается только первая поверхность на пути луча.
3. Radiosity.
Вместо «метода трассировки лучей», в данном методе просчет работает независимо от камеры и является объектно-ориентированным в отличие от метода «пиксель по пикселю». Основная функция “radiosity” заключается в том, чтобы более точно имитировать цвет поверхности путем учета непрямого освещения (отскок рассеянного света).
Преимуществами «radiosity» являются мягкие градуированные тени и цветовые отражения на объекте, идущие от соседних объектов с ярким окрасом.
Достаточно популярна практика использования метода Radiosity и Raytrace вместе для достижения максимально впечатляющих и фотореалистичных рендеров.
Что такое Рендеринг видео?
Иногда, выражение «рендерить» используют не только в работе с компьютерной 3D графикой, но и при работе с видеофайлами. Процесс рендеринга видео начинается тогда, когда пользователь видеоредактора закончил работу над видеофайлом, выставил все нужные ему параметры, звуковые дорожки и визуальные эффекты. По сути, все что осталось, это соединить все проделанное в один видеофайл. Этот процесс можно сравнить с работой программиста, когда он написал код, после чего все что осталось, это скомпилировать весь код в работающую программу.
Как и у 3D дизайнера, так и у пользователя видеоредактора, процесс рендеринга идет автоматически и без участия пользователя. Все что требуется, это задать некоторые параметры перед стартом.
Скорость рендеринга видео зависит от продолжительности и качества, которое требуется на выходе. В основном, большая часть просчета ложиться на мощность центрального процессора, поэтому, от его производительности и зависит скорость видео-рендеринга.
chto-takoe.net
что это такое и кто этим занимается?
«Рендеринг» – все чаще мы встречаемся с этим новым и совсем не понятным словом. Игры, программы и, с не таких давних пор, профессии – всюду мы встречаемся с ним. Так что же такое рендеринг?
Что такое рендеринг?
Рендеринг 3D моделиВ широком смысле слова: Рендеринг – это термин компьютерной графики, которым обозначают процесс визуализации, или построения изображения, модели с помощью компьютерной программы. А такое странное название русский язык позаимствовал у английского, таким образом, значительно усложнив нам жизнь, ведь если бы мы называли «rendering» «визуализацией», что так и переводится на русский язык, все было бы значительно понятней.
Однако в контексте под рендерингом могут иметь ввиду совсем другие вещи. Например, принимая вас на роботу, под данным требованием могут подразумевать навыки создания 3D графики, тогда как это только последний этап её создания.
Кто занимается рендерингом?
Все этапы создания 3D модели
Самая распространенная профессия требующая от вас знания рендеринга это «3D дизайнер». Специалист такого рода может создавать все: от элементарного банера до моделей компьютерных игр.
И, конечно же, 3D дизайнер занимается не только рендерингом, но и всеми предшествующими этапами создания 3D графики, а именно: моделирование, текстурирование, освещение, анимация и только после – визуализация.
Однако, 3D дизайнер не работает с математическими и физическими формулами, описывая их языками программирования. Все это за него делают программы компиляторы (3D Max, Maya, Cinema 4D, Zbrush, Blender и т.д.) и уже написанных библиотек физических свойств (ODE, Newton, PhysX, Bullet и т.п.).
Отдельно среди перечисленных выше программ, позволяющих создавать 3D графику нужно выделить бесплатную программу OGRE 3D – графические движки специально для рендеринга, с помощью которого можно не только создавать «картинки», но и реализовать целую, а главное полноценную компьютерную игру. К примеру «Torchlight» в качестве игрового движка использует именно OGRE.
Ну, а для обработки такого количества и качества графических сцен настольного компьютера будет не достаточно, поэтому в последнее время для рендеринга делают не только программы но и сервисы для обработки их процессов, такие как «рендер ферма». И стоит заметить, что удовольствие это не из дешевых, не смотря на низкие цены рендер фермы цена рендеринга получается довольно внушительной – 3,9 центов / ГГц-час.
На этом экскурс по рендерингу подошёл к концу, и если вас это привлекает – занимайтесь, ведь зарплаты у хорошего 3D дизайнера не маленькие, а игровая индустрия это та отрасль, что вряд ли когда-то станет невостребованной.
GD Star Rating
loading…
softocop.ru
Что такое рендеринг? И что такое рендер? Словарь разработчиков компьютерных игр!
В продолжении ликбеза по компьютерной графике как для программистов, так и для художников хочу поговорить о том что такое рендеринг. Вопрос не так сложен как кажется, под катом подробное и доступное объяснение!
Я начал писать статьи, которые являются ликбезом для разработчика игр. И поторопился, написав статью про шейдеры, не рассказав что же такое рендеринг. Поэтому эта статья будет приквелом к введению в шейдеры и отправным пунктом в нашем ликбезе.
Что такое рендеринг? (для программистов)
Итак, Википедия дает такое определение: Ре́ндеринг (англ. rendering — «визуализация») — термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.
Довольно неплохое определение, продолжим с ним. Рендеринг — это визуализация. В компьютерной графике и 3д-художники и программисты под рендерингом понимают создание плоской картинки — цифрового растрового изображения из 3д сцены.
То есть, неформальный ответ на наш вопрос «Что такое рендеринг?» — это получение 2д картинки (на экране или в файле не важно). А компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).
Рендер
В свою очередь словом «рендер» называют чаще всего результат рендеринга. Но иногда и процесс называют так же (просто в английском глагол — render перенесся в русский, он короче и удобнее). Вы, наверняка, встречали различные картинки в интернете, с подписью «Угадай рендер или фото?». Имеется ввиду это 3D-визуализация или реальная фотография (уж настолько компьютерная графика продвинулась, что порой и не разберешься).
Виды рендеринга
В зависимости от возможности сделать вычисления параллельными существуют:
- многопоточный рендеринг — вычисления выполняются параллельно в несколько потоков, на нескольких ядрах процессора,
- однопоточный рендеринг — в этом случае вычисления выполняются в одном потоке синхронно.
Существует много алгоритмов рендеринга, но все их можно разделить на две группы по принципу получения изображения: растеризация 3д моделей и трасировка лучей. Оба способа используются в видеоиграх. Но трасировка лучей чаще используется не для получения изображений в режиме реального времени, а для подготовки так называемых лайтмапов — световых карт, которые предрасчитываются во время разработки, а после результаты предрасчета используются во время выполнения.
В чем суть методов? Как работает растеризация и трасировка лучей? Начнем с растеризация.
Растеризация полигональной модели
Сцена состоит из моделей, расположенных на ней. В свою очередь каждая модель состоит из примитивов.
Это могут быть точки, отрезки, треугольники и некоторые другие примитивы, такие как квады например. Но если мы рендерим не точки и не отрезки, любые примитивы превращаются в треугольники.
Задача растеризатора (программа, которая выполняет растеризацию) получить из этих примитивов пиксели результирующего изображения. Растеризация в разрезе графического пайплайна, происходит после вершинного шейдера и до фрагментного (Статья про шейдеры).
*возможно следующей статьёй будет обещанный мной разбор графического пайплайна, напишите в комментариях нужен ли такой разбор, мне будет приятно и полезно узнать скольким людям интересно это всё. Я сделал отдельную страничку где есть список разобранных тем и будущих — Для разработчиков игр
В случае с отрезком нужно получить пиксели линии соединяющей две точки, в случае с треугольником пиксели которые внутри него. Для первой задачи применяется алгоритм Брезенхема, для второй может применяться алгоритм заметания прямыми или проверки барицентрических координат.
Сложная модель персонажа состоит из мельчайших треугольников и растеризатор генерирует из неё вполне достоверную картинку. Почему тогда заморачиваться с трассировкой лучей? Почему не растеризовать и все? А смысл вот в чем, растеризатор знает только своё рутинное дело, треугольники — в пиксели. Он ничего не знает об объектах рядом с треугольником.
А это значит что все физические процессы которые происходят в реальном мире он учесть не в состоянии. Эти процессы прямым образом влияют на изображение. Отражения, рефлексы, тени, подповерхностное рассеивание и так далее! Все без чего мы будем видеть просто пластмассовые модельки в вакууме…
А игроки хотят графоний! Игрокам нужен фотореализм!
И приходится графическим программистам изобретать различные техники, чтобы достичь близости к фотореализму. Для этого шейдерные программы используют текстуры, в которых предрассчитаны разные данные света, отражения, теней и подповерхностного рассеивания.
В свою очередь трассировка лучей позволяет рассчитать эти данные, но ценой большего времени рассчета, которое не может быть произведено во время выполнения. Рассмотрим, что из себя представляет этот метод.
Трасировка лучей (англ. ray tracing)
Помните о корпускулярно волновом дуализме? Напомню в чем суть: свет ведёт себя и как волны и как поток частиц — фотонов. Так вот трассировка (от англ «trace» прослеживать путь), это симуляция лучей света, грубо говоря. Но трассирование каждого луча света в сцене непрактично и занимает неприемлемо долгое время.
Мы ограничимся относительно малым количеством, и будем трассировать лучи по нужным нам направлениям.
А какие направления нам нужны? Нам надо определять какие цвета будут иметь пиксели в результирующей картинке. Тоесть количество лучей мы знаем, оно равно количеству пикселей в изображении.
Что с направлением? Все просто, мы будем трассировать лучи в соответствии с точкой наблюдения (то как наша виртуальная камера направлена). Луч встретится в какой-то точке с объектом сцены (если не встретится, значит там темный пиксель или пиксель неба из скайбокса, например).
При встрече с объектом луч не прекращает своё распространение, а разделяется на три луча-компонента, каждый из которых вносит свой вклад в цвет пикселя на двумерном экране: отражённый, теневой и преломлённый. Количество таких компонентов определяет глубину трассировки и влияет на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, метод позволяет получить очень фотореалистичные изображения, однако из-за большой ресурсоёмкости процесс визуализации занимает значительное время.
Рендеринг для художников
Но рендеринг это не только программная визуализация! Хитрые художники тоже используют его. Так что такое рендеринг с точки зрения художника? Примерно то же самое, что и для программистов, только концепт-художники выполняют его сами. Руками. Точно так же как рендерер в видео-игре или V-ray в Maya художники учитывают освещение, подповерхностное рассеивание, туман и др. факторы, влияющие на конечный цвет поверхности.
К примеру картинка выше, поэтапно прорабатывается таким образом: Грубый скетч — Лайн — Цвет — Объем — Рендер материалов.
Рендер материалов включает в себя текстурирование, проработку бликов — металлы, например, чаще всего очень гладкие поверхности, которые имеют четкие блики на гранях. Помимо всего этого художники сталкиваются с растеризацией векторной графики, это примерно то же самое, что и растеризация 3д-модели.
Растеризация векторной графики
Суть примерно такая же, есть данные 2д кривых, это те контуры, которыми заданы объекты. У нас есть конечное растровое изображение и растеризатор переводит данные кривых в пиксели. После этого у нас нет возможности масштабировать картинку без потери качества.
Читайте дальше
Статьи из рубрики «Ликбез для начинающих разработчиков игр«, скорее всего окажутся очень для Вас полезными, позвольте-с отрекомендовать:
Послесловие
В этой статье, я надеюсь, вы осили столько букв, вы получили представление о том, что такое рендеринг, какие виды рендеринга существуют. Если какие-то вопросы остались — смело задавайте их в комментариях, я обязательно отвечу. Буду благодарен за уточнения и указания на какие-то неточности и ошибки.
coremission.net
Рендер — это… Что такое Рендер?
Фотореалистичное изображение, отрендеренное в Rhinoceros 3D, модель игральной кости — в Cinema 4D.Ре́ндеринг (англ. rendering — «визуализация») в компьютерной графике — процесс получения изображения по модели с помощью компьютерной программы.
Здесь модель — это описание любых объектов или явлений на строго определённом языке или в виде структуры данных. Такое описание может содержать геометрические данные, положение точки наблюдателя, информацию об освещении, степени наличия какого-то вещества, напряжённость физического поля и пр.
Примером визуализации могут служить радарные космические снимки, представляющие в виде изображения данные, полученные посредством радиолокационного сканирования поверхности космического тела, в диапазоне электро-магнитных волн, невидимых человеческим глазом.
Часто в компьютерной графике (художественной и технической) под рендерингом понимают создание плоского изображения (картинки) по разработанной 3D-сцене. Изображение — это цифровое растровое изображение. Синонимом в данном контексте является Визуализация.
Визуализация — один из наиболее важных разделов в компьютерной графике, и на практике он тесным образом связан с остальными. Обычно, программные пакеты трехмерного моделирования и анимации включают в себя также и функцию рендеринга. Существуют отдельные программные продукты, выполняющие рендеринг.
В зависимости от цели, различают пре-рендеринг, как достаточно медленный процесс визуализации, применяющийся в основном при создании видео, и рендеринг в реальном режиме, применяемый в компьютерных играх. Последний часто использует 3D-ускорители.
Методы рендеринга (визуализации)
На текущий момент разработано множество алгоритмов визуализации. Существующее программное обеспечение может использовать несколько алгоритмов для получения конечного изображения.
Трассирование каждого луча света в сцене непрактично и занимает неприемлемо длительные периоды времени. Даже трассирование малого количества лучей, достаточного, чтобы получить изображение, занимает чрезмерное количество времени, если не применяется аппроксимация (семплирование).
Вследствие этого, было разработано четыре группы методов, более эффективных, чем моделирование всех лучей света, освещающих сцену:
- Растеризация (англ. rasterization) и метод сканирования строк (англ. scanline rendering). Визуализация производится проецированием объектов сцены на экран без рассмотрения эффекта перспективы относительно наблюдателя.
- Метод бросания лучей (англ. ray casting). Сцена рассматривается, как наблюдаемая из определённой точки. Из точки наблюдения на объекты сцены направляются лучи, с помощью которых определяется цвет пикселя на двумерном экране. При этом лучи прекращают своё распространение (в отличие от метода обратного трассирования), когда достигают любого объекта сцены либо её фона. Возможно используются какие-то очень простые техники добавления оптических эффектов или внесения эффекта перспективы.
- Глобальное освещение (англ. global illumination, radiosity). Использует математику конечных элементов, чтобы симулировать диффузное распространение света от поверхностей и при этом достигать эффектов «мягкости» освещения.
- Трассировка лучей (англ. ray tracing) похожа на метод бросания лучей. Из точки наблюдения на объекты сцены направляются лучи, с помощью которых определяется цвет пиксела на двумерном экране. Но при этом луч не прекращает своё распространение, а разделяется на три компоненты, луча, каждый из которых вносит свой вклад в цвет пиксела на двумерном экране: отражённый, теневой и преломленный. Количество таких разделений на компоненты определяет глубину трассирования и влияет на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, метод позволяет получить очень фотореалистичные изображения, но при этом он очень ресурсоёмкий и процесс визуализации занимает значительные периоды времени.
Передовое программное обеспечение обычно совмещает в себе несколько техник, чтобы получить достаточно качественное и фотореалистичное изображение за приемлемые затраты вычислительных ресурсов.
Математическое обоснование
Реализация механизма рендеринга всегда основывается на физической модели. Производимые вычисления относятся к той или иной физической или абстрактной модели. Основные идеи просты для понимания, но сложны для применения. Как правило, конечное элегантное решение или алгоритм более сложны и содержат в себе комбинацию разных техник.
Основное уравнение
Ключом к теоретическому обоснованию моделей рендеринга служит уравнение рендеринга. Оно является наиболее полным формальным описанием части рендеринга, не относящейся к восприятию конечного изображения. Все модели представляют собой какое-то приближённое решение этого уравнения.
Неформальное толкование таково: Количество светового излучения (Lo), исходящего из определённой точки в определённом направлении есть собственное излучение и отражённое излучение. Отражённое излучение есть сумма по всем направлениям приходящего излучения (Li), умноженного на коэффициент отражения из данного угла. Объединяя в одном уравнении приходящий свет с исходящим в одной точке, это уравнение составляет описание всего светового потока в заданной системе.
Программное обеспечение для рендеринга — Рендеры (Визуализаторы)
- 3Delight
- AIR
- ART
- AQSIS
- Angel
- BMRT (Blue Moon Rendering Tools) (распространение прекращено)
- Brazil R/S
- BusyRay
- Entropy (продажи прекращены)
- NVIDIA, mental ray)
- Holomatix Renditio (интерактивный рейтрейсер)
- Indigo Rendererv
- mental ray
- LuxRender
- Maxwell Render
- Meridian
- RenderMan (PhotoRealistic RenderMan, Pixar’s RenderMan или PRMan)
- Turtle
- YafRay
- Пакеты трёхмерного моделирования, имеющие собственные рендеры
Таблица сравнения свойств рендеров
рендеры | совместим с 3ds Max | совместим с | совместим с Houdini | совместим с LightWave | совместим с SketchUp | совместим с Cinema 4D | biased, unbiased | scanline | raytrace | алгоритмы Global Illumination или свои алгоритмы | Depth of Field | Motion Blur (vector pass) | Displasment | Area Light | Glossy Reflect/Refract | SubSurface Scattering (SSS) | Stand Alone | текущая версия | год выпуска | библиотека материалов | основан на технологии | normal mapping | IBL | Physical sun | официальный сайт | страна производитель | стоимость $ | основное преимущество | компания производитель | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Да, через MaxMan | Да, через RenderMan Artist Tools | Да, через XSIMan | Да | Нет | Нет | Нет | Да (начиная с 11-ой версии) | biased | Да | очень медленный | Да | очень быстрый | быстрый | Да | Да | Да | 13.5,2,1 | 1987 | Нет | США | 3500 | mental ray | встроен | встроен | встроен | Да | Нет | Нет | Нет | Нет | biased | Да | Да | Photon, Final Gather (Quasi-Montecarlo) | Да | Да | Да | Да | Да | Да | Да | 3.6 | 1986 | 33 My mentalRay | Германия | 195 | mental images (c 2008 NVIDIA) | ||||||||||||||
Gelato (разработка прекращена) | Да | Да | Нет | Нет | Нет | Нет | Нет | Нет | biased | Да | Да | Да | быстрый | быстрый | Да | Да | Да | 2.2 | 2003 | Нет | США | 0 | NVIDIA | ||||||||||||||||||||||||||||||||||||||
Да | Да, предрелизная версия, доступна для скачивания на официальном сайте | Нет | Нет | Нет | Нет | Да | Да | biased | Нет | Да | Light Cash, Photon Map, Irradiance Map, Brute Force (Quasi-Montecarlo) | Да | Да | медленный, 2d и 3d | Да | Да | Да | 2005 года (сырая) | 1.5 RC5 | 2000 | 1300 vray-materials | Болгария | 1135 (Super Bundle) 999 (Bundle) 899 (Standart) 240 (Educational) | Chaos Group | |||||||||||||||||||||||||||||||||||||
finalRender | Да | Да | Нет | Нет | Нет | Нет | Нет | Да | biased | Нет | Да | Hyper Global Illumination, Adaptive Quasi-Montecarlo, Image, Quasi Monte-Carlo | Да | Да, считает вектор пасс | медлленный | Да | Да | Да | Нет | Stage-2 | 2002 | 30 оф. сайт | Германия | 1000 | cebas | ||||||||||||||||||||||||||||||||||||
Brazil R/S | Да | Нет | Нет | Нет | Нет | Нет | Нет | Нет | biased | Нет | Да | Quasi-Montecarlo, PhotonMapping | Да | Да | Нет | Да | Да | Да | Нет | 2 | 2000 | 113 оф. сайт | США | 735 | SplutterFish | ||||||||||||||||||||||||||||||||||||
Turtle | Нет | Да | Нет | Нет | Нет | Нет | Нет | Нет | biased | Нет | Да | Photon Map, Final Gather | Да | Да | быстрый | Да | Да | Да | Нет | 4.01 | 2003 | Нет | liquidlight | Швеция | 1500 | Baking высокая скорость (не очень высокое качество) | Illuminate Labs | ||||||||||||||||||||||||||||||||||
Maxwell Render | Да | Да | Да | Нет | Да | Нет | Да | Да | unbiased | Нет | Нет | Metropolis Light Transport | Да | Да | Да | Да | Да | Да | Да | 1.61 | 2007 (?) | 3226 оф. сайт | Maxwell Render | Испания | 995 | Next Limit | |||||||||||||||||||||||||||||||||||
Fryrender | Да | Да | Да | Да | Да | Нет | Да | Да | unbiased | Нет | Нет | Metropolis Light Transport | Да | Да | Да | Да | Да | Да | Да | 1.91 | 2006 (?) | 110 оф. сайт | Fryrender | Испания | 1200 | Feversoft | |||||||||||||||||||||||||||||||||||
Indigo Renderer | Да | Да | Да | Да | Нет | Да | Да | Да | unbiased | Нет | Нет | Metropolis Light Transport | Да | Да | Да | Да | Да | Да | Да | 1.0.9 | 2006 | 80 оф. сайт | Metropolis Light Transport | Indigo Renderer | ? | 0 | Открытое программное обеспечение | ? |
См. также
Хронология важнейших публикаций
- 1968 Ray casting (Appel, A. (1968). Some techniques for shading machine renderings of solids. Proceedings of the Spring Joint Computer Conference 32, 37—49.)
- 1970 Scan-line algorithm (Bouknight, W. J. (1970). A procedure for generation of three-dimensional half-tone computer graphics presentations. Communications of the ACM)
- 1971 Gouraud shading (Gouraud, H. (1971). Computer display of curved surfaces. IEEE Transactions on Computers 20 (6), 623—629.)
- 1974 Texture mapping (Catmull, E. (1974). A subdivision algorithm for computer display of curved surfaces. PhD thesis, University of Utah.)
- 1974 Z-buffer (Catmull, E. (1974). A subdivision algorithm for computer display of curved surfaces. PhD thesis)
- 1975 Phong shading (Phong, B-T. (1975). Illumination for computer generated pictures. Communications of the ACM 18 (6), 311—316.)
- 1976 Environment mapping (Blinn, J.F., Newell, M.E. (1976). Texture and reflection in computer generated images. Communications of the ACM 19, 542—546.)
- 1977 Shadow volumes (Crow, F.C. (1977). Shadow algorithms for computer graphics. Computer Graphics (Proceedings of SIGGRAPH 1977) 11 (2), 242—248.)
- 1978 Shadow buffer (Williams, L. (1978). Casting curved shadows on curved surfaces. Computer Graphics (Proceedings of SIGGRAPH 1978) 12 (3), 270—274.)
- 1978 Bump mapping (Blinn, J.F. (1978). Simulation of wrinkled surfaces. Computer Graphics (Proceedings of SIGGRAPH 1978) 12 (3), 286—292.)
- 1980 BSP trees (Fuchs, H. Kedem, Z.M. Naylor, B.F. (1980). On visible surface generation by a priori tree structures. Computer Graphics (Proceedings of SIGGRAPH 1980) 14 (3), 124—133.)
- 1980 Ray tracing (Whitted, T. (1980). An improved illumination model for shaded display. Communications of the ACM 23 (6), 343—349.)
- 1981 Cook shader (Cook, R.L. Torrance, K.E. (1981). A reflectance model for computer graphics. Computer Graphics (Proceedings of SIGGRAPH 1981) 15 (3), 307—316.)
- 1983 Mipmaps (Williams, L. (1983). Pyramidal parametrics. Computer Graphics (Proceedings of SIGGRAPH 1983) 17 (3), 1—11.)
- 1984 Octree ray tracing (Glassner, A.S. (1984). Space subdivision for fast ray tracing. IEEE Computer Graphics & Applications 4 (10), 15—22.)
- 1984 Alpha compositing (Porter, T. Duff, T. (1984). Compositing digital images. Computer Graphics (Proceedings of SIGGRAPH 1984) 18 (3), 253—259.)
- 1984 Distributed ray tracing (Cook, R.L. Porter, T. Carpenter, L. (1984). Distributed ray tracing. Computer Graphics (Proceedings of SIGGRAPH 1984) 18 (3), 137—145.)
- 1984 Radiosity (Goral, C. Torrance, K.E. Greenberg, D.P. Battaile, B. (1984). Modelling the interaction of light between diffuse surfaces. Computer Graphics (Proceedings of SIGGRAPH 1984) 18 (3), 213—222.)
- 1985 Hemi-cube radiosity (Cohen, M.F. Greenberg, D.P. (1985). The hemi-cube: a radiosity solution for complex environments. Computer Graphics (Proceedings of SIGGRAPH 1985) 19 (3), 31—40.)
- 1986 Light source tracing (Arvo, J. (1986). Backward ray tracing. SIGGRAPH 1986 Developments in Ray Tracing course notes)
- 1986 Rendering equation (Kajiya, J.T. (1986). The rendering equation. Computer Graphics (Proceedings of SIGGRAPH 1986) 20 (4), 143—150.)
- 1987 Reyes algorithm (Cook, R.L. Carpenter, L. Catmull, E. (1987). The reyes image rendering architecture. Computer Graphics (Proceedings of SIGGRAPH 1987) 21 (4), 95—102.)
- 1991 Hierarchical radiosity (Hanrahan, P. Salzman, D. Aupperle, L. (1991). A rapid hierarchical radiosity algorithm. Computer Graphics (Proceedings of SIGGRAPH 1991) 25 (4), 197—206.)
- 1993 Tone mapping (Tumblin, J. Rushmeier, H.E. (1993). Tone reproduction for realistic computer generated images. IEEE Computer Graphics & Applications 13 (6), 42—48.)
- 1993 Subsurface scattering (Hanrahan, P. Krueger, W. (1993). Reflection from layered surfaces due to subsurface scattering. Computer Graphics (Proceedings of SIGGRAPH 1993) 27 (), 165—174.)
- 1995 Photon mapping (Jensen, H.J. Christensen, N.J. (1995). Photon maps in bidirectional monte carlo ray tracing of complex objects. Computers & Graphics 19 (2), 215—224.)
- 1997 Metropolis light transport (Veach, E. Guibas, L. (1997). Metropolis light transport. Computer Graphics (Proceedings of SIGGRAPH 1997) 16 65—76.)
Wikimedia Foundation. 2010.
dic.academic.ru
Рендеринг — это что такое? Программы для рендеринга
XXI век — время технологий и совершенства. На смену всему приходят компьютеры, возможности которых все больше и больше увеличиваются. Смотреть фильмы, играть, общаться и даже работать можно по компьютеру. Одним из перспективных занятий с применением такой техники на сегодняшний день является моделирование и монтаж роликов.
В этой статье изучим, что такое рендеринг, зачем он нужен и какие программы необходимо использовать, чтобы заниматься таким родом деятельности. Также узнаем все профессии, с которыми тесно связано это понятие.
Понятие рендеринга
Рендеринг — это процесс получения изображения из модели или ее элементов путем пропуска этой самой модели через определенные свойства компьютерной программы.
Если говорить простым языком, этот термин означает преображение объекта в его новый, задуманный разработчиком вид. Своего рода визуализация идеи. Рендеринг — это неоднородное понятие, так как фактически преобразовать модель можно в разный вид. Например, из модели можно получить просто изображение или сделать видеоролик. Также можно внедрить вашу модель в игру или просто создать 3D-объект.
Кто занимается рендерингом?
Что такое рендеринг в понятии специалиста? Кто им занимается? Процессом рендеринга занимаются самые разные люди, потому как такого рода визуализация и имитация помогает довести планируемую модель до совершенства.
Конечно же, в первую очередь рендерингом занимаются дизайнеры. Рекламу на баннерах, фотографии объектов, которые невозможно сфотографировать так четко и структурно, схемы, 3D-графики, планы и многое другое можно получить только путем обрабатывания моделей в специальных программах. Этим и занимается большинство дизайнеров.
Видемонтажеры занимаются рендерингом видеороликов, потому как фактическая склейка или показ в ролике не отснятых объектов влечет за собой рендеринг. Это своеобразная разработка кадров. Ведь этот процесс требует иногда придать объектам нужную форму или движение. Неужели вы думаете, что в рекламе по телевизору кетчуп из упаковки действительно течет так филигранно?
Высококвалифицированные специалисты и монтажеры занимаются 3D-рендеринг визуализацией для кинофильмов. Крупным кинокомпаниям сегодня не обойтись без компьютерной графики. Рендеринг — это процесс, помогающий спроектировать все не отснятые элементы на экран или, возможно, впечатлить зрителей спецэффектами.
Видеомонтажеров, работающих с моделями, также называют моушен-дизайнерами. Разработчики игр также имеют прямое отношение к рендерингу и моделингу, так как для создания компьютерной игры требуется целый мир, визуализированный рендерингом. Все игры на компьютерах и приставках написаны на коде, а визуальные элементы созданы при помощи моделинга.
Программы для рендеринга
Существует огромное множество программ для обработки и визуализации объектов. В этом списке будут представлены самые часто используемые и качественные программы для рендеринга. Это позволит начинающим дизайнерам определиться с вектором развития своих способностей и с выбором оптимального приложения для себя.
Cinema 4D
Самая известная и новая программа для работы с моделями на сегодняшний день — Cinema 4D. Работа в ней проста относительно других программ, ресурсы «Синемы» также не требуют очень больших просчетов со стороны компьютера. Это важно для нормальной работы системы. Когда вы ставите модель на рендеринг, занятость процессоров очень влияет на качество и способность вашего компьютера сделать все быстрее и надежнее.
К примеру, старая система может визуализировать модель за несколько часов, когда в новой системе на этот процесс потребуется не больше десяти минут. А программа с правильной архитектурой позволяет еще больше ускорить процесс и получить готовый продукт максимально качественным.
Sony Vegas
Программа с известным на весь мир именем от одноименной компании представляет собой удобный интерфейс для работы с видео. Рендеринг видео — не самый простой процесс, поэтому для него необходим софт, позволяющий удобно располагать кадры относительно друг друга, добавлять эффекты и внедрять 3D-элементы, расставлять свет и преобразовывать готовую картинку. Практически все профессионалы, имеющие дело с видеороликами, работают в Sony Vegas.
Также существует конкурирующий аналог этой программы — Adobe After Effects, но работать в нем тяжелее. И если вы никогда ранее не имели опыта с видеомонтажем, то советуем продукт от Sony. Огромное множество кинолент пропущены через архитектуру этой программы и являются эталонными в медиасфере.
Заключение
Сегодня вы узнали что это такое — рендеринг, а также основные программы как для начинающих, так и для настоящих профессионалов.
В заключение стоит сказать, что профессия дизайнера в этой сфере очень востребована на сегодняшний день в больших городах России, таких как Москва и Санкт-Петербург. Государственные университеты уже образовали несколько кафедр, развивающихся в этом направлении, потому как специалисты такого типа сегодня необходимы во многих сферах развития общества.
Источник
ruud.ru
Что такое рендер? – Render Times
Рендер или рендеринг (от англ. термина rendering – визуализация) – это процес обработки модели с помощью специальной компьютерной программы. Работая в определенном 3d пакете, художник создает трехмерную модель и затем запускает ее обработку – рендер в плоскую, 2d картинку.
Наиболее часто, термин рендер применяется в компьютерной графике, где процесс рендеринга предполагает обработку созданной 3d сцены для получения статичного изображения или секвенции кадров в случае анимации. Обычно, современные программы (например, 3ds max, Cinema 4D) для работs с графикой уже содержат встроенные приложения для рендера, но при желании можно использовать и внешние рендер-движки (V-ray, Corona).
Процесс рендеринга требует большого объема вычислительной мощности и требует современного, мощного “железа”, чтобы обрабатывать значительное количество кадров высокого разрешения в разумные сроки. Проще говоря, рендер нагружает компьютер по полной, можно сравнить нагрузку с модным “майнингом”. Поэтому, если нужно рендерить изображения 4К, ролики в FullHD по минуте и не ждать неделями – нужно задуматься о покупке серьзного проиозводительного компьютера (или нескольких) и/или знакомиться со специализированными рендер фермами.
При рендере компьютер на 100% занят просчетами и пользоваться им для других задач (например, серфить в Интернете) не только сложно, но и может привести к сбою рендера – компьютер может зависнуть и потерять весь прогресс рендера кадра. В это время можно сходить попить кофе, пообедать или поспать – многие визуализаторы весь день создают графику, а на ночь или выходные ставят задачи на рендер, когда компьютер им все равно не требуется.
Похожие статьи
Поделиться в соцсетях
www.rendertimes.ru